skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahmed, Masud"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Liang, Xuefeng (Ed.)
    Deep learning has achieved state-of-the-art video action recognition (VAR) performance by comprehending action-related features from raw video. However, these models often learn to jointly encode auxiliary view (viewpoints and sensor properties) information with primary action features, leading to performance degradation under novel views and security concerns by revealing sensor types and locations. Here, we systematically study these shortcomings of VAR models and develop a novel approach, VIVAR, to learn view-invariant spatiotemporal action features removing view information. In particular, we leverage contrastive learning to separate actions and jointly optimize adversarial loss that aligns view distributions to remove auxiliary view information in the deep embedding space using the unlabeled synchronous multiview (MV) video to learn view-invariant VAR system. We evaluate VIVAR using our in-house large-scale time synchronous MV video dataset containing 10 actions with three angular viewpoints and sensors in diverse environments. VIVAR successfully captures view-invariant action features, improves inter and intra-action clusters’ quality, and outperforms SoTA models consistently with 8% more accuracy. We additionally perform extensive studies with our datasets, model architectures, multiple contrastive learning, and view distribution alignments to provide VIVAR insights. We open-source our code and dataset to facilitate further research in view-invariant systems. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026